Linear Servomotors

Model Designations

- Combination of Moving Coil and Magnetic Way

S	$G \quad L \quad C=$	D16		085		-750 A	
		2nd+3rd+ 4th digits		6th +7 th + 8th digits		$\begin{aligned} & \text { 11th }+12 \text { th }+ \\ & \text { 13th digits } \end{aligned} \quad \begin{aligned} & \text { 14th } \\ & \text { digit } \end{aligned}$	
1 st digit	Servomotor Model	6th + 7th + 8th digits L		Length of Moving Coil	Design Revision Order of Moving Coil		
Code	Specifications	Code	Specifications	Oties Diamáa Code oil Magnaic May	A, B..	Hall Sensor	
C	Cylinder type	085	85 mm	D16	10th digit		
		100	100 mm	D20			
2nd +3 rd +4 th digits Outer Diameter of Magnetic Way		115	115 mm	D16	Code	Specifications	
Code	Specifications	125	125 mm	D25	P	With hall sensor (all models)	
D16	16 mm	135	135 mm	D20	11h +12 hit +13 ih digils Length of Magnetic Way (See the next page)		
D20	20 mm	145	145 mm	D16			
D25	25 mm		165 mm	D32			
D32		170		D20, D25			
	32 mm	215	215 mm	D25	14th digit	Design Revision Order of Magnetic Way	
	Voltage	225	225 mm	D32	A, B...		
5th digit		285	285 mm	D32			

- Both coil assemblies supported, easy switching from ball screws.
- Compared to ball screw systems, high-speed and high-precision positioning greatly reduces tact time.
- Unlike ball screws, no contact with machines, no lubrication oil, easy maintenance.
- Semiconductor equipment
- Electronic parts assembly
- Food packaging machines
- Metal processing machines
- General handling machines

Magnetic Way Lengths

Moving Coil Model SGLCW-		Magnetic Way Dimensions mm					
		Standard Specifications					Special Orders
		Code = © 1 mm					Length of Magnetic Way mm
			(2)	(3)	(4)	(6)	Min. to Max.
D16A	$\begin{aligned} & 085 A P \\ & 115 A P \\ & 145 A P \end{aligned}$	300	85	30	37.5	140	240 to 420 (30 mm increments)
			115			110	
			145			80	
		510	85	45	52.5	320	480 to 750 (30 mm increments)
			115			290	
			145			260	
		750	85			560	
			115			530	
			145			500	
D20A	$\begin{aligned} & 100 \mathrm{AP} \\ & 135 \mathrm{AP} \\ & 170 \mathrm{AP} \end{aligned}$	350	100	35	45	160	280 to 490 (35 mm increments)
			135			125	
			170			90	
		590	100	50	60	370	555 to 870 (35 mm increments)
			135			335	
			170			300	
		870	100			650	
			135			615	
			170			580	
D25A	$\begin{aligned} & 125 A P \\ & 170 \mathrm{AP} \\ & 215 \mathrm{AP} \end{aligned}$	450	125	45	57.5	210	360 to 630 (45 mm increments)
			170			165	
			215			120	
		750	125	60	72.5	480	705 to 1110 (45 mm increments)
			170			435	
			215			390	
		1110	125			840	
			170			795	
			215			750	
D32A	$\begin{aligned} & 165 A P \\ & 225 A P \\ & 285 A P \end{aligned}$	600	165	60	75	285	480 to 840 (60 mm increments)
			225			225	
			285			165	
		1020	165	90	105	645	960 to 1500 (60 mm increments)
			225			585	
			285			525	
		1500	165			1125	
			225			1065	
			285			1005	

(1) Length of Magnetic Way
(2) Length of Moving Coil
(3) Position of Support Section
(4) Range Outside the Guaranteed Force
(5) Effective Strokes

Range Within

Note: (4) Range outside the guaranteed force: If any part of the moving coil is located within this range,
characteristics indicated in Force and Speed Characteristicson page 184 cannot be satisfied.
<Calculating Length of Magnetic Way >
(2)Length of Moving Coil (mm)
(4) Range Outside the

Guaranteed Force (mm)
(5) Effective Strokes (mm)

Formula

Length of Magnetic Way
$[$ (2) + (4) $\times 2+$ (3) $](\mathrm{mm})$

Ratings and Specifications

Time Rating: Continuous
Insulation Resistance: 500 VDC, $10 \mathrm{M} \Omega \mathrm{min}$.
Ambient Temperature: 0 to $40^{\circ} \mathrm{C}$
Excitation: Permanent magnet

Withstand Voltage: 1500 VAC for one minute
Enclosure: Self-cooled
Ambient Humidity: 20\% to 80\% (no condensation)
Allowable Winding Temperature: $130^{\circ} \mathrm{C}$ (Thermal class B)

Linear Servomotor Model SGLC-		D16A			D20A			D25A			D32A		
		085A	115A	145A	100A	135A	170A	125A	170A	215A	165A	225A	285A
Peak Speed ${ }^{3}$	m / s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Rated Force ${ }^{*}$	N	17	25	34	30	45	60	70	105	140	90	135	180
Rated Current ${ }^{+1}$	Arms	0.59	0.53	0.66	0.98	0.98	1.19	1.42	1.75	3.49	1.57	2.79	2.79
Instantaneous Peak Force ${ }^{11}$	N	60	90	120	150	225	300	280	420	560	420	630	840
Instantaneous Peak Current ${ }^{11}$	Arms	2.07	2.07	2.52	4.90	4.90	5.95	5.68	6.98	12.96	7.32	13.01	13.01
Moving Coil Mass	kg	0.3	0.4	0.5	0.6	0.8	1.0	1.0	1.4	1.8	1.8	2.5	3.2
Force Constant	N/Arms	31.2	46.8	51.3	33.0	49.5	54.3	53.1	64.8	43.2	61.8	52.2	69.6
BEMF Constant	$\mathrm{V} /(\mathrm{m} / \mathrm{s})$	10.4	15.6	17.1	11.0	16.5	18.1	17.7	21.6	14.4	20.6	17.4	23.2
Motor Constant	$\mathrm{N} / \sqrt{\mathrm{w}}$	4.8	5.9	6.7	7.5	9.2	10.4	10.0	12.4	15.4	16.2	20.0	23.0
Electrical Time Constant	ms	0.18	0.18	0.17	0.38	0.32	0.41	0.18	0.59	0.65	0.76	1.18	1.58
Mechanical Time Constant	ms	13.1	11.7	11.3	10.70	9.50	9.30	10.1	9.2	7.6	6.9	6.3	6.0
Thermal Resistance With Heat Sink	K/ W	3.35	2.9	1.64	1.66	1.45	1.29	1.00	0.68	0.61	0.77	0.53	0.49
Thermal Resistance Without Heat Sink	K/W	6.79	5.24	4.26	4.35	3.38	2.76	2.99	2.29	1.81	1.87	1.43	1.16
Magnetic Attraction ${ }^{2}$	N	0	0	0	0	0	0	0	0	0	0	0	0
Applicable SERVOPACK	SGDV-	R70A	R70A	R90A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	2R8A	5R5A	5R5A

*1: These items and "Force and Speed Characteristics" are the values at a motor winding temperature of $100^{\circ} \mathrm{C}$ during operation in combination with a SERVOPACK. The others are at $20^{\circ} \mathrm{C}$.
*2: Logical magnetic attraction acting between the moving coil and the magnetic way. Because of the gap imbalance created after installing the moving coil and the magnetic way, a magnetic attraction is generated.
*3: The rated speed during operation by speed control with an analog voltage reference must be set to $1.5 \mathrm{~m} / \mathrm{s}$
Note: These specifications show the values under the cooling conditions when a heat sink (aluminum board) listed in the following table is mounted on the moving coil. Heat Sink Size $100 \mathrm{~mm} \times 200 \mathrm{~mm} \times 12 \mathrm{~mm}:$ SGLC-D16A085A, -D16A115A
$200 \mathrm{~mm} \times 300 \mathrm{~mm} \times 12 \mathrm{~mm}:$ SGLC-D16A145A, -D20A100A, -D20A135A, -D20A170A
$300 \mathrm{~mm} \times 400 \mathrm{~mm} \times 12 \mathrm{~mm}:$ SGLC-D25A125A, -D32A165A
$400 \mathrm{~mm} \times 500 \mathrm{~mm} \times 12 \mathrm{~mm}:$ SGLC-D25A170A, -D25A215A, -D32A225A, -D32A285A

Ratings and Specifications

- Force and Speed Characteristics A: Continuous Duty Zone B: Intermittent Duty Zone (Note)

Notes: 1 The characteristics of the intermittent duty zone differ depending on the supply voltages. The solid, dotted, and dashed-dotted lines of the intermittent duty zone indicate the characteristics when a servomotor runs with the following combinations:

- The solid line: With a three-phase 200 V SERVOPACK
- The dotted line: With a single-phase 200 V SERVOPACK
- The dashed-dotted line: With a single-phase 100 V SERVOPACK

SGLC-D16A085AP and SGLC-20A100AP servomotors combined with single-phase 200 V SERVOPACKs have the same characteristics as those combined with threephase ones.
2 When the effective force is within the rated force, the servomotor can be used within the intermittent duty zone.

- Mechanical Specifications of Linear Servomotors

(1) Impact Resistance

- Impact acceleration: $98 \mathrm{~m} / \mathrm{s}^{2}$
- Impact occurrences: twice
(2) Vibration Resistance

The linear servomotors will withstand the following vibration acceleration in three directions:
Vertical, side to side, and front to back.

- Vibration acceleration: Moving Coil: $24.5 \mathrm{~m} / \mathrm{s}^{2}$

Magnetic Way: $24.5 \mathrm{~m} / \mathrm{s}^{2}$ in axis direction
$4.9 \mathrm{~m} / \mathrm{s}^{2}$ in vertically and horizontally

External Dimensions Units: mm

(1) SGLC-D16
\bullet Moving Coil: SGLCW-D16A $\square \square \square$ AP (With a connector by Tyco Electronics AMP K.K.)

Moving Coil Model SGLCW-	L1	L2	Approx. Mass kg
D16A085AP	85	75	0.3
D16A115AP	115	105	0.4
D16A145AP	145	135	0.5

*: The values indicate the mass of moving coil with a hall sensor unit

Hall Sensor

Connector Specifications

Pin Connector:
17JE-23090-02 (D8C) by DDK Ltd.
The Mating Connector

$$
\begin{aligned}
& \text { Socket Connector: } \\
& \text { 17JE-13090-02 (D8C) } \\
& \text { Stud: 17L-002C or } \\
& 17 \mathrm{~L}-002 \mathrm{C} 1
\end{aligned}
$$

Pin No.	Name
1	+5 V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	0V (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor
Connector Specifications

Plug: 350779-1
Pin : 350690-3 or
350561-3 (No. 1 to 3)
770210-1 (No.4)
by Tyco

Pin No.	Name	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

Electronics AMP K.K.
The Mating Connector
Cap: $350780-1$
Socket: $350925-1$ or Socket: 350925-1 or

Hall Sensor Output Signals
When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

External Dimensions Units: mm

- Magnetic Way: SGLCM-D16 $\square \square \square$ A

Notes:1 The magnetic way will become deformed if a magnetic attraction with the moving coil is generated.
Take measures over the entire driving range to prevent any interference between the magnetic way and the moving coil after installation.
2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass kg	Remarks
D16240A	240 ± 1.6	30	180	25	37.5 ± 0.3	165 ± 1.2	37.5	0.38	-
D16270A	270 ± 1.6	30	210	25	37.5 ± 0.3	195 ± 1.2	37.5	0.43	
D16300A	300 ± 1.6	30	240	25	37.5 ± 0.3	225 ± 1.2	37.5	0.48	Standard
D16330A	330 ± 1.6	30	270	25	37.5 ± 0.3	255 ± 1.2	37.5	0.53	-
D16360A	360 ± 1.6	30	300	25	37.5 ± 0.3	285 ± 1.2	37.5	0.58	
D16390A	390 ± 1.6	30	330	25	37.5 ± 0.3	315 ± 1.2	37.5	0.63	
D16420A	420 ± 1.6	30	360	25	37.5 ± 0.3	345 ± 1.2	37.5	0.68	
D16480A	480 ± 2.5	45	390	40	52.5 ± 0.3	375 ± 2.1	52.5	0.75	
D16510A	510 ± 2.5	45	420	40	52.5 ± 0.3	405 ± 2.1	52.5	0.80	Standard
D16540A	540 ± 2.5	45	450	40	52.5 ± 0.3	435 ± 2.1	52.5	0.85	-
D16570A	570 ± 2.5	45	480	40	52.5 ± 0.3	465 ± 2.1	52.5	0.90	
D16600A	600 ± 2.5	45	510	40	52.5 ± 0.3	495 ± 2.1	52.5	0.95	
D16630A	630 ± 2.5	45	540	40	52.5 ± 0.3	525 ± 2.1	52.5	1.0	
D16660A	660 ± 2.5	45	570	40	52.5 ± 0.3	555 ± 2.1	52.5	1.05	
D16690A	690 ± 2.5	45	600	40	52.5 ± 0.3	585 ± 2.1	52.5	1.1	
D16720A	720 ± 2.5	45	630	40	52.5 ± 0.3	615 ± 2.1	52.5	1.15	
D16750A	750 ± 3	45	660	40	52.5 ± 0.3	645 ± 2.5	52.5	1.2	Standard

External Dimensions Units: mm

(2) SGLC-D20

- Moving Coil: SGLCW-D20A $\square \square \square$ AP (With a connector by Tyco Electronics AMP K.K.)

*: The values indicate the mass of moving coil with a hall sensor unit

Hall Sensor

Connector Specifications

Pin Connector:
17JE-23090-02 (D8C) by DDK Ltd.
The Mating Connector

> | Socket Connector: |
| :--- |
| 17JE-13090-02 (D8C) |
| Stud: 17L-002C or |

17L-002C1

Pin No.	Name
1	+5V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	OV (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor
Connector Specifications
狍 (21)(3)
Plug: 350779-1
Pin : 350690-3 or
350561-3 (No. 1 to 3)
770210-1 (No.4)
by Tyco
Electronics AMP K.K.
The Mating Connector
Cap: 350780-1 Socket: 350925-1 or 770673-1

Hall Sensor Output Signals
When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

External Dimensions Units: mm

- Magnetic Way: SGLCM-D20 $\square \square \square$ A

Notes: 1 The magnetic way will become deformed if a magnetic attraction with the moving coil is generated.
Take measures over the entire driving range to prevent any interference between the magnetic way and the moving coil after installation
2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass kg	Remarks
D20280A	280 ± 1.6	35	210	30	45 ± 0.3	190 ± 1.2	45	0.68	-
D20315A	315 ± 1.6	35	245	30	45 ± 0.3	225 ± 1.2	45	0.77	
D20350A	350 ± 1.6	35	280	30	45 ± 0.3	260 ± 1.2	45	0.86	Standard
D20385A	385 ± 1.6	35	315	30	45 ± 0.3	295 ± 1.2	45	0.95	-
D20420A	420 ± 1.6	35	350	30	45 ± 0.3	330 ± 1.2	45	1.0	
D20455A	455 ± 1.6	35	385	30	45 ± 0.3	365 ± 1.2	45	1.1	
D20490A	490 ± 1.6	35	420	30	45 ± 0.3	400 ± 1.2	45	1.2	
D20555A	555 ± 2.5	50	455	45	60 ± 0.3	435 ± 2.1	60	1.35	
D20590A	590 ± 2.5	50	490	45	60 ± 0.3	470 ± 2.1	60	1.45	Standard
D20625A	625 ± 2.5	50	525	45	60 ± 0.3	505 ± 2.1	60	1.55	-
D20660A	660 ± 2.5	50	560	45	60 ± 0.3	540 ± 2.1	60	1.6	
D20695A	695 ± 2.5	50	595	45	60 ± 0.3	575 ± 2.1	60	1.7	
D20730A	730 ± 2.5	50	630	45	60 ± 0.3	610 ± 2.1	60	1.8	
D20765A	765 ± 2.5	50	665	45	60 ± 0.3	645 ± 2.1	60	1.9	
D20800A	800 ± 2.5	50	700	45	60 ± 0.3	680 ± 2.1	60	2.0	
D20835A	835 ± 2.5	50	735	45	60 ± 0.3	715 ± 2.1	60	2.1	
D20870A	870 ± 3	50	770	45	60 ± 0.3	750 ± 2.5	60	2.2	Standard

External Dimensions Units: mm

(3) SGLC-D25
\bullet Moving Coil: SGLCW-D25A $\square \square \square$ AP (With a connector by Tyco Electronics AMP K.K.)

Moving Coil Model SGLCW-	L.1	L2	Approx. Mass kg
D25A125AP	125	110	1.0
D25A170AP	170	153	1.4
D25A215AP	215	200	1.8

*: The values indicate the mass of moving coil with a hall sensor unit

Hall Sensor
Connector Specifications

Pin Connector:
17JE-23090-02 (D8C) by DDK Ltd.
The Mating Connector
Socket connector:
17JE-13090-02 (D8C)
Stud: 17L-002C or
17L-002C1

Pin No.	Name
1	+5 V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	oV (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor
Connector Specifications
肠 (e)
Plug: 350779-1
Pin: (No. 1 to 3)
350561-3 or 350690-3
(No. 4)
350654-1 or 350669-1
by Tyco Electronics AMP K.K
The Mating Connector
Cap : 350780-1
Socket: 350925-1 or
770673-1

Pin No.	Name	Wire Color
$\mathbf{1}$	Phase U	Red
$\mathbf{2}$	Phase V	White
$\mathbf{3}$	Phase W	Blue
$\mathbf{4}$	FG	Green

External Dimensions Units: mm

- Magnetic Way: SGLCM-D25 $\square \square \square$ A

Notes: 1 The magnetic way will become deformed if a magnetic attraction with the moving coil is generated.
Take measures over the entire driving range to prevent any interference between the magnetic way and the moving coil after installation.
2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass kg	Remarks
D25360A	360 ± 1.6	45	270	37	57.5 ± 0.3	245 ± 1.2	57.5	1.5	-
D25405A	405 ± 1.6	45	315	37	57.5 ± 0.3	290 ± 1.2	57.5	1.65	
D25450A	450 ± 1.6	45	360	37	57.5 ± 0.3	335 ± 1.2	57.5	1.8	Standard
D25495A	495 ± 1.6	45	405	37	57.5 ± 0.3	380 ± 1.2	57.5	1.95	-
D25540A	540 ± 1.6	45	450	37	57.5 ± 0.3	425 ± 1.2	57.5	2.1	
D25585A	585 ± 1.6	45	495	37	57.5 ± 0.3	470 ± 1.2	57.5	2.25	
D25630A	630 ± 1.6	45	540	37	57.5 ± 0.3	515 ± 1.2	57.5	2.4	
D25705A	705 ± 2.5	60	585	52	72.5 ± 0.3	560 ± 2.1	72.5	2.85	
D25750A	750 ± 2.5	60	630	52	72.5 ± 0.3	605 ± 2.1	72.5	3.0	Standard
D25795A	795 ± 2.5	60	675	52	72.5 ± 0.3	650 ± 2.1	72.5	3.15	-
D25840A	840 ± 2.5	60	720	52	72.5 ± 0.3	695 ± 2.1	72.5	3.3	
D25885A	885 ± 2.5	60	765	52	72.5 ± 0.3	740 ± 2.1	72.5	3.45	
D25930A	930 ± 2.5	60	810	52	72.5 ± 0.3	785 ± 2.1	72.5	3.6	
D25975A	975 ± 2.5	60	855	52	72.5 ± 0.3	830 ± 2.1	72.5	3.75	
D251020A	1020 ± 2.5	60	900	52	72.5 ± 0.3	875 ± 2.1	72.5	3.9	
D251065A	1065 ± 2.5	60	945	52	72.5 ± 0.3	920 ± 2.1	72.5	4.05	
D251110A	1110 ± 3	60	990	52	72.5 ± 0.3	965 ± 2.5	72.5	4.2	Standard

External Dimensions Units: mm

(4) SGLC-D32

- Moving Coil: SGLCW-D32A $\square \square \square$ AP (With a connector by Tyco Electronics AMP K.K.)

Moving Coil Model SGLCW-	L.1	L2	N	Approx. Mass kg
D32A165AP	165	145	4	1.8
D32A225AP	225	205	4	2.5
D32A285AP	285	265	6	3.2

*: The values indicate the mass of moving coil with a hall sensor unit

Hall Sensor

Connector Specifications

Pin Connector:
17JE-23090-02 (D8C) by DDK Ltd.
The Mating Connector Socket connector: 17JE-13090-02 (D8C) Stud: 17L-002C or

17L-002C1

Pin No.	Name
1	+5 V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	0 V (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor

Connector Specifications

Plug: 350779-1
Pin: (No. 1 to 3)
350561-3 or 350690-3
(No. 4)
350654-1 or 350669-1

Pin No.	Name	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

by Tyco Electronics AMP K.K
The Mating Connector

Cap:	$350780-1$
Socket:	$350925-1$ or

Hall Sensor Output Signals

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

External Dimensions Units: mm

- Magnetic Way: SGLCM-D32 $\square \square \square$ A

Notes: 1 The magnetic way will become deformed if a magnetic attraction with the moving coil is generated.
Take measures over the entire driving range to prevent any interference between the magnetic way and the moving coil after installation.
2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass kg	Remarks
D32480A	480 ± 1.6	60	360	52	75 ± 0.3	330 ± 1.2	75	3.0	-
D32540A	540 ± 1.6	60	420	52	75 ± 0.3	390 ± 1.2	75	3.4	
D32600A	600 ± 1.6	60	480	52	75 ± 0.3	450 ± 1.2	75	3.8	Standard
D32660A	660 ± 1.6	60	540	52	75 ± 0.3	510 ± 1.2	75	4.2	-
D32720A	720 ± 1.6	60	600	52	75 ± 0.3	570 ± 1.2	75	4.6	
D32780A	780 ± 1.6	60	660	52	75 ± 0.3	630 ± 1.2	75	5.0	
D32840A	840 ± 1.6	60	720	52	75 ± 0.3	690 ± 1.2	75	5.4	
D32960A	960 ± 2.5	90	780	82	105 ± 0.3	750 ± 2.1	105	5.9	
D321020A	1020 ± 2.5	90	840	82	105 ± 0.3	810 ± 2.1	105	6.3	Standard
D321080A	1080 ± 2.5	90	900	82	105 ± 0.3	870 ± 2.1	105	6.7	-
D321140A	1140 ± 2.5	90	960	82	105 ± 0.3	930 ± 2.1	105	7.1	
D321200A	1200 ± 2.5	90	1020	82	105 ± 0.3	990 ± 2.1	105	7.5	
D321260A	1260 ± 2.5	90	1080	82	105 ± 0.3	1050 ± 2.1	105	7.9	
D321320A	1320 ± 2.5	90	1140	82	105 ± 0.3	1110 ± 2.1	105	8.3	
D321380A	1380 ± 2.5	90	1200	82	105 ± 0.3	1170 ± 2.1	105	8.7	
D321440A	1440 ± 2.5	90	1260	82	105 ± 0.3	1230 ± 2.1	105	9.1	
D321500A	1500 ± 3	90	1320	82	105 ± 0.3	1290 ± 2.5	105	9.5	Standard

Selecting Cables

- Cables Connections

*: A serial converter unit can be connected directly to an absolute linear scale.

- Cables

Name	Applicable Linear Servomotor Model	Length	Order No.	Specifications	Details
Linear Servomotor Power Cables	All models	1 m	JZSP-CLN11-01-E		(1)
		3 m	JZSP-CLN11-03-E		
		5 m	JZSP-CLN11-05-E		
		10 m	JZSP-CLN11-10-E		
		15 m	JZSP-CLN11-15-E		
Cables for Connecting Linear Scales*	All models	1 m	JZSP-CLL00-01-E-G\#		(2)
		3 m	JZSP-CLL00-03-E-G\#		
		5 m	JZSP-CLL00-05-E-G\#		
		10 m	JZSP-CLL00-10-E-G\#		
		15 m	JZSP-CLL00-15-E-G\#		
Cables for Connecting Serial Converter Units	All models	1 m	JZSP-CLP70-01-E-G\#		(3)
		3 m	JZSP-CLP70-03-E-G\#		
		5 m	JZSP-CLP70-05-E-G\#		
		10 m	JZSP-CLP70-10-E-G\#		
		15 m	JZSP-CLP70-15-E-G\#		
		20 m	JZSP-CLP70-20-E-G\#		
(4) Cables for Connecting Hall Sensors	All models	1 m	JZSP-CLL10-01-E-G\#		(4)
		3 m	JZSP-CLL10-03-E-G\#		
		5 m	JZSP-CLL10-05-E-G\#		
		10 m	JZSP-CLL10-10-E-G\#		
		15 m	JZSP-CLL10-15-E-G\#		

*: When using serial converter unit JZDP-G00 $\square-\square \square \square-E$, the maximum cable length is 3 m .
Note: The digit "\#" of the order number represents the design revision.

Selecting Cables

(1) Linear Servomotor Power Cables:

 JZSP-CLN11- $\square \square$-E

- Wiring Specifications

SERVOPACK-end Leads		Linear Servomotor-end Connector	
Wire Color	Signal	Signal	Pin. No.
Black 1	Phase U	Phase U	1
Black 2	Phase V	Phase V	2
Black 3	Phase W	Phase W	3
Green/yellow	FG	FG	4

(3) Cables for Connecting Serial Converter Units: JZSP-CLP70- $\square \square$-E-G\#

- Wiring Specifications

SERVOPACK End				Serial Converter Unit End		
Pin No.	Signal	Wire Color		Pin No.	Signal	Wire Color
1	PG5V	Red		1	+5V	Red
2	PGOV	Black	- 1	5	OV	Black
3	-	-	$1 \quad 1$	3	-	-
4	-	-		4	-	-
5	PS	Light blue		2	Phase S output	Light blue
6	/PS	Light blue/white		6	Phase / output	Light blue/white
Shell	Shield	-		Case	Shield	-
				7	-	-
				8	-	-
				9	-	-

(2) Cables for Connecting Linear Scales: JZSP-CLLOO- $\square \square$-E-G\#

- Wiring Specifications

Serial Converter Unit End		i	Linear Scale End	
Pin No.	Signal		Pin No.	Signal
1	/Cos(V1-)	1	1	/Cos(V1-)
2	/Sin(V2-)	,	2	/Sin(V2-)
3	Ref(V0+)	1	3	Ref(V0+)
4	+5V	1	4	+5V
5	5 Vs	1	5	5 Vs
6	BID	1	6	BID
7	Vx	1	7	Vx
8	Vq	!	8	Vq
9	Cos(V1+)	1	9	Cos(V1+)
10	Sin(V2+)	1	10	Sin(V2+)
11	/Ref(V0+)	T	11	/Ref(V0-)
12	OV	I	12	OV
13	OVs		13	OVs
14	DIR		14	DIR
15	Inner	-	15	Inner
Case	Shield		Case	Shield

(4) Cables for Connecting Hall Sensors JZSP-CLL10- $\square \square$-E-G\#

- Wiring Specifications

Serial Converter Unit End			Hall Sensor End	
Pin No.	Signal		Pin No.	Signal
1	+5V		1	+5V
2	Phase U input	1	2	Phase U input
3	Phase V input		3	Phase V input
4	Phase W input	1	4	Phase W input
5	OV	1	5	OV
6	-	1	6	-
7	-	1	7	-
8	-	1	8	-
9	-		9	-
Case	Shield		Case	Shield

